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bstract

The prediction of the dynamic behaviour of a chemical process is important for reactor design, optimization and safety. It is, however, beset with
ncertainties of both, models and their input data. The latter are addressed here and the influence of uncertainties of key parameters, i.e. the heat of
eaction, the reaction rate constant and the apparent energy of activation, on the calculation results and the conclusions drawn from them is shown.
he conventional approach for the propagation of uncertainties through calculations, the Monte-Carlo method, is compared with calculations using
olynomial chaos. The latter require considerably less time for calculation and are hence better suited for parameter variations, which are always
eeded in the design process. Both approaches are applied to an existing plant for manufacturing the explosive hexogen and illustrated by showing

he evolution of the concentration of the product with time and the associated uncertainties. The ranges of predicted production quantities and
aw material consumption as well as the impact of uncertainties on designing the dumping system for preventing a runaway reaction after cooling
ailure are also presented.

2007 Published by Elsevier B.V.
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. Introduction

Uncertainties in engineering calculations affect both, models
nd their input data. The latter are addressed here. Among the
ources of data uncertainties figure the following (cf. [1]):

. systematic error (due to biases in measuring apparatuses and
experimental procedures);

. transfer of data measured in a specific environment (e.g.
laboratory) to industrial conditions;

. insufficient knowledge (due to economic or other con-
straints);

. random errors and unavoidable statistical variations (due to
unavoidable imperfections in measurement);

. variability (due to fluctuations of a quantity with time, e.g.

heat transfer coefficient owing to instabilities of flow);

. inherent randomness (as a consequence of the Heisenberg
indeterminacy).

∗ Tel.: +49 391 6718831; fax: +49 391 6711128.
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Whilst the uncertainties due to lack of knowledge, also called
pistemic, i.e. (1)–(3), may be reduced, although the effort
equired may be an obstacle, stochastic uncertainties, i.e. (4)–(6),
ill always be present. Both types of uncertainties are usually
escribed by probability distributions.

Lack of knowledge concerning data for chemical reactor cal-
ulations can manifest itself by their dearth or even absence,
o that (uncertain) analogies, expert judgment and the like have
o be used. Uncertainty may also result from the co-existence
f several different data for the same parameter, each of which
otentially applies to the problem at hand.

The relevance of uncertainties stems from their impact on
imulation results. They affect the design and optimization
f a system and, in particular, the design of safety-relevant
eatures. If not heeded, over or underdesign may be the conse-
uence. In addition, taking into account uncertainties enables
ne to accommodate the fact that different input data are
ormally known with different degrees of certainty, a circum-
tance which should be reflected by the calculation results.

urthermore, the systematic analysis of uncertainties can pro-
ide insight into the level of confidence of model estimates
nd help identify key sources of uncertainties [2]. Data uncer-
ainties have been a concern in the optimization of process
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Table 1
Operational parameters of the nitration reactor

Parameter Symbol Datum

Volume of the reaction zone V 630 l
Initial temperature of reaction T(0) 4.0 ◦C
Mass of reactor contents – 970.2 kg
Volumetric flow through the reactor V̇ 0.49 l/s
Concentration of hexamine in feed CHA,in 0.9851 mol/l
Concentration of nitric acid in feed CHNO3,in 20.9087 mol/l
Coolant inlet temperature Tc,in −5.0 ◦C
Area of the heat exchanger (jacket

and coil inside)
F 7.0 m2

Global heat transfer coefficient U 1.4 kW/(m2 K)
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lants (cf. [3–6]) but less so in relation with plant safety (cf.
7,8]).

In order to assess the impact of input data uncertainties on
he results they have to be propagated through the calculations.
his propagation is usually performed using the Monte-Carlo
ethod, either in its straight form or applying effort-reducing

echniques such as Latin Hypercube Sampling (cf. [9]). In any
ase, heavy computational demand results.

Alternatives which reduce this demand are the stochastic
esponse surface method whose application to chemical reac-
ion systems is explored in [2] and a non-stochastic approach
nown as homogeneous polynomial chaos. It is founded on the
omogeneous chaos theory [10]. Uncertainty is treated there by
spectral expansion based on Hermite orthogonal polynomials

n terms of Gaussian random variables. This method was applied
xtensively to problems in mechanics (cf. [11]).

Application of the straight Monte-Carlo method to chemical
rocesses is found in [6] and [7], that of the Latin Hypercube Pro-
edure in [8]. The treatment of uncertainties affecting chemical
rocess simulations by means of the polynomial chaos approach
s presented in [12] and [13].

The purpose of the present paper is to show the impact of
ncertainties on the analysis of a chemical process as well as
he design considerations derived therefrom and to compare the

onte-Carlo and polynomial chaos approaches. This is done by
nalyzing the dynamic behaviour of the process step “nitration”
f an existing plant for the production of the explosive hexogen
s a typical example of an exothermal process.

This process would require the reactor to be tripped by dump-
ng its contents into a knock-out tank in case a runaway reaction
hould occur. In this context the influence of uncertainties on

ssessing the time available for the trip is shown.

The paper is organized as follows: the example process and
he derivation of the kinetic equation is described in Section 2
ollowed by the process model in Section 3. The treatment of the

t
a
t
i

able 2
hysical properties and feed temperatures of the substances involved in the nitration

rea Datum

eed
Hexamine C6H12N4 Molar mass

Heat capacity
Temperature

Nitric acid HNO3 Molar mass
Heat capacity
Concentration
Temperature

roducts and side products
Hexogen C3H6N6O6 Molar mass

Heat capacity

Methanediol dinitrate CH2(ONO2)2 Molar mass
Heat capacity

Ammonium nitrate NH4NO3 Molar mass
Heat capacity

Water H2O Molar mass
Heat capacity
pecific heat capacity of the coolant
(water plus 25% of methanol)

cp,c 3.6 kJ/(kg K)

ncertain quantities, i.e. heat of reaction and the kinetic param-
ters, is dealt with in Section 4 and their propagation through
he calculation by both, Monte-Carlo and polynomial chaos, is
reated in Section 5. Section 6 is devoted to a comparison of the
esults. Times available for trip are discussed in Section 7 and
he conclusions are drawn in Section 8.

. Process description and reaction kinetics

The production of the explosive hexogen, also known as
DX, is described in detail in [14]. The plant considered
mploys the so-called SH process, in which hexamethylenete-
ramine (hexamine) reacts with nitric acid to form RDX. Its
undamental step, the nitration, is analysed in more detail below.

The reaction takes place in a continuously stirred tank reac-

or, which forms part of a cascade of reactors. An excess of nitric
cid by a factor between 8 and 10, as well as reaction tempera-
ures below 20 ◦C are required for safe operation. The reaction
s started by feeding hexamine via a transportation screw into

process

MHA 140.19 kg/kmol
cp,HA 1.256 kJ/(kg K)
THA,in 20 ◦C

MHNO3 63.01 kg/kmol
cp,HNO3 1.989 kJ/(kg K)
– Approximately 98.5%
THNO3,in 4 ◦C

MRDX 222.12 kg/kmol
cp,RDX 1.19 kJ/(kg K)

MC 138.04 kg/kmol
cp,C 1.926 kJ/(kg K)

MD 80.05 kg/kmol
cp,D 1.759 kJ/(kg K)

MH2O 18 kg/kmol
cp,H2O 4.187 kJ/(kg K)
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he reactor, which is filled with nitric acid at 4 ◦C. Operational
etails of the reactor provided by a manufacturer are given in
able 1.

Several reactions take place concurrently. The complex reac-
ion network can be described by the following simplified set of
eaction equations (cf. [15]).

C6H12N4
(Hexamine)

+ 10HNO3 → C3H6N6O6
(RDX)

+3CH2(ONO2)2 + NH4NO3 + 3H2O (1)

or the formation of the product and

6H12N4 + 16HNO3 → 6CH2(ONO2)2 + 4NH4NO3 (2)

or the side reaction. Since no details about the kinetics of
he side reaction are available, the following treatment will, of
ecessity, be limited to the main reaction.

The physical properties of the substances needed for the cal-
ulations are given in Table 2.

The nitration process is exothermal. Different heats of nitra-
ion are quoted, i.e. 162.5 kJ, 293.4 kJ, 368.3 kJ per mol of
itrated hexamine [14]. The heat of nitration, −�Hr, must
herefore be considered as an uncertain datum (epistemic uncer-
ainty). On the other hand, the data provided in [14] are
nsufficient for deriving a temperature-dependent kinetic equa-
ion. Such an equation may be obtained, within narrow limits,
rom experimental evidence presented in [15], which is given in
able 3 along with conversion rates calculated using the equa-

ions stated below.
The rate of the nitration reaction is given by

(t, T ) = kR(T )C0
HNO3

CHA(t)n

= A exp

(
−ER

T

)
C0

HNO3
CHA(t)n (3)

here r(t, T) is the reaction rate, A the pre-exponential factor, E
he apparent energy of activation, R the gas constant, n the order

f reaction and T is the temperature.

Since the experiment was conducted with an excess of nitric
cid (weight ratio 11:1) its concentration, C0

HNO3
, is considered

s constant in time. The depletion of hexamine is then governed

t
c

able 3
bserved fractional conversions of the nitration of hexamine to hexogen for differen
alues used for determining the kinetic parameters)

emperature in ◦C Reaction time in min Fractional conversion of he

25 600 0.83
10 360 0.83

0 120 0.82
10 45 0.82
20 15 0.81
30 10 0.80
35 19 0.80
40 5 0.79
50 5 0.73
60 5 0.63
ng Journal 140 (2008) 278–286

y

dCHA

dt
= −A exp

(
− E

RT

)
C0

HNO3
CHA(t)n (4)

onsidering that CHA(t) = C0
HA[1 − xA(t)] the solution of Eq.

4) may be written as

n

[
t

[1 − xA(t)]1−n − 1

]
= ln

[
(C0

HA)
1−n

A(n − 1)C0
HNO3

]
+ E

RT
(5)

hich lends itself to linear regression analysis in the form

n

[
t

[1 − xA(t)]1−n − 1

]
= μa + μb

T
(6)

n order to obtain the parameters E, A and n of Eq. (3).
The resulting regression coefficients are μa = −25.962 with

standard deviation of σa = 1.782 and μb = 4136.5 with a stan-
ard deviation of σb = 491.11. Since both coefficients stem from
he same set of experimental values, they are correlated, the
orrelation coefficient ρ being −0.99774.

Considering that in the experiment the initial concentra-
ions were C0

HNO3
= 21.388 mol/l and C0

HA = 0.888 mol/
one obtains, by combining Eqs. (5) and (6),

= μbR = 34.3909 kJ/mol, A = exp(−μa)/γ = 2,850,288,090
l/mol)9.958 min−1 = 47,504,801 (l/mol)9.958 s−1 with n = 9.958
the latter was found by varying n and choosing the value
roviding the best fit), where γ = C0

HNO3
(n − 1)C0 n−1

HA .
Table 3 shows that the agreement between the experimental

nd calculated values within the range of interest for the present
nalysis of the dynamic behaviour of the reactor, viz. 0–23 ◦C,
s excellent. The quality in describing the experimental values
or 0 ◦C cited in [14] warrants the application of the equation
o the concentration of nitric acid in the present process, viz.
8.5%, especially for longer times of residence, as can be seen
rom Table 4.

. Basic process model
Based on Eq. (1) the following dynamic model for the reac-
ion may be formulated. It makes use of the concept of the
ontinuously stirred tank reactor (CSTR) (cf. [16]).

t temperatures and times of residence with nitric acid of 98% (bold numbers:

xamine (observed) xA Fractional conversion of hexamine (calculated)

0.83
0.83
0.82
0.82
0.80
0.80
0.82
0.80
0.81
0.82
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Table 4
Observed fractional conversions of the nitration of hexamine to hexogen at 0 ◦C for different times of residence and concentrations of nitric acid

Time in min Concentration of HNO3 (fractional conversion of hexamine (observed) xA) Fractional conversion of hexamine (calculated)

99% 96%

1.5 – 0.557 0.714
2.5 0.669 0.687 0.730
6.5 0.702 0.753 0.757

1 0.774
2 0.790
5 0.807
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All parameters involved in the process are beset with uncer-
tainties. Major impacts are to be expected from the uncertainties
affecting the heat of reaction, the reaction rate constant and the
apparent energy of activation. As usual, these quantities are rep-

Table 5
Process parameters at steady state (calculations with point values)

Parameter Quantity

Hexamine feed 243.60 kg/h
Hexamine discharge 64.09 kg/h
Nitric acid feed 2323.99 kg/h
Nitric acid discharge 1517.12 kg/h
2 0.746 0.747
4 0.809 0.792
0 0.805 –

.1. Process model

Hexamine (HA)

V
dCHA

dt
=V̇CHA,in − V̇CHA − Vr(t, T ), CHA(0) = 0 (7)

Nitric acid (HNO3)

V
dCHNO3

dt
= V̇CHNO3,in − V̇CHNO3 − 10Vr(t, T ),

CHNO3 (0) = 20.91 (8)

Hexogen (RDX)

V
dCRDX

dt
= −V̇CRDX + Vr(t, T ), CRDX(0) = 0 (9)

Methanediol dinitrate (C)

V
dCC

dt
= −V̇CC + 3Vr(t, T ), CC(0) = 0 (10)

Ammonia nitrate (D)

V
dCD

dt
= −V̇CD + Vr(t, T ), CD(0) = 0 (11)

Water (H2O)

V
dCH2O

dt
= −V̇CH2O + 3Vr(t, T ), CH2O(0) = 0 (12)

.2. Process energy balance

6

i=1

CiMicp,iV
dT

dt
= Q̇ − Q̇cool, T (0) = 277.16 (13)

here Q̇ = V̇ (CHA,inMHAcp,HATHA,in + CHNO3,inMHNO3

p,HNO3THNO3,in −∑6
i=1CiMicp,iT ) + (−�Hr)r(t, T )V deno-

es the heat generated and Q̇cool = ṁcp,c(T − Tc,in)[1 −
xp(−(FU/ṁcp,c))] the heat extracted, with i denoting the
bove mentioned substances (HA, HNO3, RDX, C, D, H2O).

.3. PI controller for coolant flow

dṁ K K
dt
= 1

τ
(Q̇ − Q̇cool) +

τ
sh, ṁ(0) = 2 (14)

dsi

dt
= KmV/TT − uc

pi

, si(0) = 0 (15)

H
H
N
T

ig. 1. Evolution of the concentrations of the principal substances with time
calculated with point values).

h = uc − KmV/TT + si, sh(0) = 0 (16)

n Eqs. (14)–(16) ṁ in kg/s is the mass flow of coolant,
1 = 1 kg/kW, K = 200 kg/mV the cooler gain, τ = 2000 s the
ooler time constant, pi = 4000 s the integrator coefficient,
c = 288.16 mV the command signal and KmV/T = 1.0 mV/K is
he gain in mV in the transducer.

The system is solved using a Runge-Kutta algorithm with
n adaptive time step size. The evolution of the concentrations
f the principal substances involved in the process with time is
ound in Fig. 1. The calculations are based on mean values (point
alues).

Relevant parameters for the process at steady state are pre-
ented in Table 5.

. Uncertainties
exogen production 284.47 kg/h
examine consumption per 1 t of hexogen 631.06 kg/t
itric acid consumption per 1 t of hexogen 2836.37 kg/t
emperature of production 15.67 ◦C
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represent any one of Eqs. (7)–(13), where α and d are the random
quantities.
82 U. Hauptmanns / Chemical Engi

esented by probability distributions. In the case of the heat of
eaction the Weibull distribution (cf. [17]) was chosen from
mong seven different probability distributions, since it pro-
uced the smallest quadratic deviation. The Weibull probability
ensity function is

f�H (|�Hr|) = ηb(η |�Hr|)b−1 exp(−η |�Hr|)b,
|�Hr| , b, η > 0 (17)

he corresponding parameter values are: b = 3.85 and
= 0.003274.

The uncertainties of the regression coefficients are supposed,
s usual, to be binormally distributed. Hence, the regression esti-
ators a and b are represented by a bivariate normal distribution
ith probability density function (cf. [17])

A,B(a, b) =

exp
{−(1/2(1 − ρ2))

[
((a − μa)/σa)2

−2ρ((a − μa)/σa)((b − μb)/σb)

+ ((b − μb)/σb)2]}
2πσaσb

√
(1 − ρ2)

,

≤ a, b < ∞; σa, σb > 0; |ρ | < 1 (18)

ith the mean values, standard deviations and correlation coef-
cient stated in Section 2.

. Uncertainty propagation

If the uncertainties represented by Eqs. (17) and (18) are taken
nto consideration, Eqs. (7)–(16) become a system of stochastic
ifferential equations. In what follows this will be solved using
he Monte-Carlo and the polynomial chaos approaches.

.1. Monte-Carlo

The Monte-Carlo approach entails the generation of a large
umber of realizations from the probability distributions for the
ncertain quantities involved, viz. Eqs. (17) and (18), and the
olution of the system of deterministic equations describing the
rocess with the input data from every set of the realizations.
very calculation is called a trial. The trials result in a probabil-

ty distribution of the final result for the parameter in question,
.g. concentrations, production temperature, etc., which are nor-
ally described by their means, variances and percentiles. This

robability distribution reflects the impact of the uncertainties
f the input data on the calculation results.

The major disadvantage of the method is its 1/
√

P con-
ergence, with P being the number of trials. This leads to a
onsiderable calculational effort, which, depending on the com-
lexity of the underlying system of equations, may become
rohibitive.

The realizations from Eqs. (17) and (18) are obtained by

enerating in the first place random numbers uniformly dis-
ributed on [0,1] and then transforming them into the pertinent
istributions. If Zp, Zp,1,. . ., Zp,4 (p = 1,. . ., P denotes the pth
rial) represent these uniform random numbers the following
ransformations produce the required results

F
t

ng Journal 140 (2008) 278–286

Weibull distribution

∣∣�Hr,p
∣∣ = −ln Zp

η
(19)

Bivariate normal distribution

Up = √−2 ln Zp,1 cos(2πZp,2),

Vp = √−2 ln Zp,3 cos(2πZp,4),

Ap = Upσa + μa and

Bp =
(

ρUp +
√(

1 − ρ2
)
Vp

)
sb + μb (20)

Ap and Bp are the realizations of the coefficients a and b of
Eq. (18).

The uniformly distributed random numbers were generated
sing L’Ecuyer’s algorithm (cf. [18]).

As an example the evolution of the hexogen concentration as
function of time after start-up (the process is shut down every
eekend) is shown in Fig. 2. The differences between the 5th

nd 95th centiles are obvious. They would lead to a prediction
f the stationary hourly production of hexogen between 279.28
nd 287.14 kg.

.2. Polynomial chaos

Given the slow convergence of the Monte-Carlo method an
lternative, the spectral expansion of uncertainties based on Her-
ite orthogonal polynomials (cf. [19]) in terms of Gaussian

andom variables with mean 0 and variance 1 (cf. [20]), is pre-
ented here. It provides a means of expanding second order
andom processes in terms of orthogonal polynomials. Such
rocesses are characterized by having a finite variance, a require-
ent satisfied by most physical processes. Details are presented

n what follows.
Let

dy = −αy + d (21)
ig. 2. Evolution of the concentration of hexogen with time including uncer-
ainty ranges calculated by the Monte-Carlo method (10,000 trials).
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Table 6
Details of polynomial chaos (according to [11])

k kth polynomial chaos 〈Φ2
k
〉

0 1 1
1 ξ 1
2 ξ2 − 1 2
3
4
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ξ3 − 3ξ2 6
ξ4 − 6ξ2 + 3 24

The polynomial chaos expansion then consists in setting

(t) =
K∑

k=0

yk(t)Φk(ξ); α =
K∑

k=0

αkΦk(ξ);

d =
K∑

k=0

dkΦk(ξ) (22)

here ξ is a random variable and Φk(ξ) the polynomial chaos of
rder k (Hermite’s polynomials in the present case). Introduction
f Eq. (22) into Eq. (21) gives

K

k=0

dyk(t)

dt
Φk(ξ) = −

K∑
k=0

K∑
j=0

yk(t)Φk(ξ)αjΦj(ξ)

+
K∑

k=0

dkΦk(ξ) (23)

he polynomials form an orthogonal basis with respect to the
eight function exp(−ξ2/2)/

√
2π, so that multiplication of Eq.

23) by Φl exp(−ξ2/2)/
√

2π and integration over the domain of
efinition, i.e. −∞, ∞, denoted by 〈 〉 leads to

dyl(t)

dt
= − 1

〈Φ2
l 〉

⎛
⎝ K∑

k=0

K∑
j=0

yk(t)αjek,j,l

⎞
⎠

+dl, l = 0, . . . , K (24)

here ek,j,l = 〈ΦkΦjΦl〉 is readily evaluated using the relations

Eξ2k+1 = 0, Eξ2k = (2k)!

2kk!

with Eξk = 1√
2π

∫ ∞

−∞
ξk exp

(
−ξ2

2

)
dξ (25)

n the present case one-dimensional chaos is appropriate,
ecause the deviation of the process from Gaussian behaviour is
mall. In such a case exponential convergence has been proved
21]. Hence, an order of K = 4 ensured sufficient convergence of
he series of Eq. (22), which were therefore truncated with the
fth term. Table 6 shows the polynomials and their orthogonality
roperties.

Cases of strong deviations from Gaussian behaviour may
e treated by increasing the number of dimensions or apply-

ng generalized polynomial chaos, where polynomials other
han Hermite’s are used. Strong non-linearities may require an
ncreased order of polynomials (cf. [22]). All of this, just as
hen a high number of reactions must be considered would •
ng Journal 140 (2008) 278–286 283

ead to an increase in the number of simultaneous non-linear
quations to be solved. In particular a system of L simultaneous,
n general coupled, first order differential equations would have
o be solved, where

= (K + N)!

K!N!
M (26)

ith polynomial order K, dimension N and number of process
quations M. It is obvious that L might become prohibitively
arge, if all parameters have to be increased at the same time.
he advantages over the Monte-Carlo method may then be lost.

The above procedure was applied to Eqs. (7)–(13) using the
tochastic coefficients whose derivation is described below. The
ystem of seven stochastic equations is thus converted into a
ystem of L = 35 deterministic equations which was solved by
he Runge-Kutta algorithm already mentioned.

If y is a random variable with a continuous distribution func-
ion G(y) and probability density function g(y) which satisfies

(y) =
∫ y

−∞
g(y′) dy′ (27)

nd {Φ(ξ)} a set of polynomial chaos whose underlying ran-
om variable ξ has the distribution function F(ξ) and probability
ensity function f(ξ) such that

(ξ) =
∫ ξ

−∞
g(ξ′) dξ′ (28)

hen the representation of y takes the form (cf. [20])

=
K∑

k=0

ykΦk(ξ), where yk = 〈y, Φk(ξ)〉
〈Φ2

k(ξ)〉 (29)

Evaluation of the numerator 〈· · ·〉 needs caution because in
ost cases y and ξ belong to different probability spaces. In order

o circumvent this difficulty y and ξ are mapped to the probability
pace defined by the uniform random variable u ∈ [0,1], i.e.

= G−1(u) and ξ = F−1(u) (30)

ence we have

yk = 〈y, Φk(ξ)〉
〈Φ2

k(ξ)〉 = 1

〈Φ2
k(ξ)〉

∫ 1

0
G−1(u)Φk

[
F−1(u)

]
du,

k = 0, 1, . . . , K (31)

n the present case F is the standard normal distribution, whose
nverse F−1 is readily calculated with a pertinent approximation
cf. [19]).

The integral in Eq. (31) is evaluated using a 10-point
auss–Legendre quadrature.

Heat of reaction
The above relationships are evaluated by using Eq. (19) to

achieve the transform to [0,1]
y = G−1(u) = (−ln u)1/b

η
(32)

Reaction rate constant
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Table 7
Comparison of the reaction rate constants velocities kR(T) and their variances
obtained by Monte-Carlo and polynomial chaos

Temperature
in ◦C

Monte-Carlo (5,000,000 trials) Polynomial chaos

Expected
value

Variance Expected
value

Variance

0 12.6865 2.3880 12.6866 2.3639
1
3

F
t

•

r

k

w
e
C

h
e

w
9
o
a

6

T
S

P

H
N
H
P

5 27.9774 15.7349 27.9776 15.5973
0 57.4832 133.3266 57.4829 131.7854

The kinetic equation requires special treatment. Based on
Eqs. (5), (6) and (20) the reaction rate equation is decomposed
into the following two independent parts:

y1 = G1
−1(u) = exp

[
−uσa − μa − ρuσb

T

] 1

γ
(33)

y2 = G2
−1(u) = exp

[
−
√

1 − ρ2uσb − μb

T

]
(34)

The procedure described by Eq. (31) is applied separately
to Eqs. (33) and (34). The following results are obtained:

EkR(T ) = y1,0y2,0 (35)

for the expected value and

Var kR(T ) =
K∑

k=0

y2
1,k

K∑
k=0

y2
2,k − (y1,0y2,0)2 (36)

for the variance. In deriving Eq. (36) the following rela-
tionship for calculating the variance of the product of two
independent random variables a and b was used [23].

σ2
a,b = E(a2b2) − (Ea)2(Eb)2 = Ea2Eb2 − (Ea)2(Eb)2

=
[
(Ea)2 + σ2

a

] [
(Eb)2 + σ2

b

]
− (Ea)2(Eb)2

= σ2
a σ2

b + (Eb)2σ2
a + (Ea)2σ2

b (37)

The result is represented by a normal distribution with the
expected value calculated according to Eq. (35) and the vari-
ance according to Eq. (36). Its representation by polynomial

chaos follows the above procedure.

A comparison of the results obtained with this procedure
and the corresponding Monte-Carlo simulation presented in
Table 7 shows that this approximate approach is feasible for

t
a
C
w

able 8
ome key parameters of the process calculated according to different procedures

arameter Point values Monte-Carlo (10,000 tr

5th Mean

examine discharge in kg/h 64.09 62.40 64
itric acid discharge in kg/h 1517.12 1509.55 1520
exogen production in kg/h 284.47 279.28 283
roduction temperature in ◦C 15.67 6.70 13
ig. 3. Evolution of the concentration of hexogen with time including uncer-
ainty ranges calculated by polynomial chaos.

the problem at hand, the maximum deviation (variance for
30 ◦C) being approximately 1%.
Reaction rate

Applying the above approach to the constant of reaction the
ate of reaction (cf. Eq. (3)) is calculated as follows

R = 1

〈Φ2
k(ξ)〉

∫ 1

0
kR

−1(u)Φk

[
F−1(u)

]

×
(

K∑
l=1

CHA,lΦl

[
F−1(u)

])n

K∑
l=1

CHNO3,lΦl

[
F−1(u)

]
du, k = 0, 1, . . . , K (38)

here k−1
R (u) is the inverse of a normal distribution with the

xpected value from Eq. (35) and variance from Eq. (36). CHA,l,
HNO3,l are the spectral coefficients of the concentrations of
exogen and nitric acid, respectively. The integral in Eq. (38) is
valuated using a 10-point Gauss–Legendre quadrature.

As an example the evolution of the hexogen concentration
ith time is shown in Fig. 3. The differences between the 5th and
5th centiles are considerable. They would lead to a prediction
f the stationary hourly production of hexogen between 277.92
nd 290.97 kg.

. Comparison of results

Key parameters of the process were calculated using both,

he Monte-Carlo and polynomial chaos procedures, as well
s point values. They are shown in Table 8. In the Monte-
arlo calculations for the steady state the coolant flow
as fixed at an average value in order to create the same

ials) Polynomial chaos

95th 5th Mean 95th

.88 67.36 59.99 64.10 68.22

.70 1531.84 1498.69 1517.21 1535.72

.21 287.14 277.92 284.44 290.97

.14 19.59 9.04 15.70 22.36
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Fig. 4. Time available for reactor trip after cooling failure as a function of the
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nstant of failure calculated with polynomial chaos (point values coincide with
he expected values of the polynomial chaos calculations; asterisks: Monte-Carlo
alculations).

oundary conditions as for the polynomial chaos, which is
ssential for comparison. Otherwise the control would try to
ompensate parameter fluctuations by raising or decreasing
oolant flow beyond ranges normally provided for in con-
rols.

The agreement of the mean values is perfect. Polynomial
haos leads to slightly larger uncertainty ranges than Monte-
arlo, the differences lying practically always below 1%.

The calculation times are a few minutes for polynomial chaos
s compared with approximately 10 h for Monte-Carlo on the
ame PC.

. Assessment of the times available for trip

Should the reactor cooling fail, the reaction temperature
ould increase with a gradient depending on the status of the

eactor at the instant of failure. For such an occurrence a sys-
em is provided which would discharge the reactor contents by
ravity into a knock-out tank below the reactor. Fig. 4 shows the
imes which are available for dumping if a maximum tempera-
ure of 23 ◦C is tolerated as a safe distance from runaway. It is
bvious that uncertainties affect the prediction, which should,
f course, be on the safe side. In the present case a minimum
alue of the 5th centile of 39.2 s is predicted as compared with
02.9 s if point values are used. In order to ensure a success-
ul functioning the result accounting for uncertainties should be
sed. Given that the discharge pipe has a diameter of 200 mm,
conservative calculation shows that 15.4 s would be sufficient

or complete discharge, leaving the difference in time for the
ctivation of the trip. The above statement means that there
s a 95% chance of dumping in time if no more than 39.2 s
re needed. It must be kept in mind, however, that these low
vailable times just prevail for about 17.2 h, which are only part
f the period of the 120 h of weekly operation. Hence, assum-
ng demands uniformly distributed over the production period
here is a probability of 0.14 that a demand on the system takes
lace during the 17.2 h mentioned. This leads to a probability
f failure (assuming the technical components involved work

erfectly) of 0.0072. About 20 h after start-up the 5th centile
eaches an asymptotic level of 48.8 s. Hence, the probability of
ailure is lower outside the time interval of 17.2 h mentioned
bove.

[

ng Journal 140 (2008) 278–286 285

. Summary and conclusions

The impact of data uncertainties on the prediction of
he dynamic behaviour of a typical exothermal process is
hown. Considerable differences as compared with the con-
entional calculations based on point values result. These
hould be considered in both, in design and safety calcula-
ions.

Two methods for the propagation of uncertainties through the
alculations are presented, Monte-Carlo and polynomial chaos.
he difference in computing time is more than two orders of
agnitude. Therefore the polynomial chaos approach is to be

referred, especially if many parameter variations are required
s, for example, in the case of calculating the time available for
reactor trip by dumping.

However, it should be borne in mind that the conceptual sim-
licity makes Monte-Carlo much easier to implement, which
ay be a criterion for its choice. Additionally, the advantage of

olynomial chaos may dwindle if there are two many uncertain
uantities involved or the deviation from Gaussian behaviour is
oo strong.
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[5] R. Henrion, P. Li, A. Möller, M.C. Steinbach, M. Wendt, G. Wozny,
Stochastic optimization for operating chemical processes under uncer-
tainty, ZIB-Report 01-04, Konrad-Zuse-Zentrum für Informationstechnik,
Berlin, 2001.

[6] T. Knetsch, U. Hauptmanns, Integration of stochastic effects and data uncer-
tainties into the design of process equipment, Risk Anal. 25 (1) (2005)
189–198.

[7] U. Hauptmanns, Uncertainty and the calculation of safety-related param-
eters for chemical reactions, J. Loss Prev. Process Ind. 10 (4) (1997)
243–247.

[8] U. Hauptmanns, Boundary conditions for developing a safety concept for
an exothermal reaction, J. Hazard. Mater. 148 (2007) 144–150.

[9] B.D. Ripley, Stochastic Simulation, John Wiley & Sons, New York, 1987.
10] N. Wiener, The homogeneous chaos, Am. J. Math. 60 (1938) 897–936.
11] R.G. Ghanem, P.D. Spanos, Stochastic Finite Elements: A Spectral

Approach, Springer-Verlag, New York, 1991.
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